zhou, m.*, yang m., ai, t., et al. (2024). rethinking the null hypothesis in significant colocation pattern mining of spatial flows. journal of geographical systems, 26:375-405.
fu, q., zhou, m.*, li, y., et al. (2024). flow spatiotemporal moran’i: measuring spatiaotemporal autocorrelation of flow data. geographical analysis.
周梦杰, 阳孟杰, 陈慧颖, 田雨萌, 万义良, 夏吉喆. 面向地理流的时空交叉k函数方法. 测绘学报, 2024, 53(8): 1644-1655.
王钰辉, 阳孟杰, 周梦杰,等.面向地理流的双变量时空扫描统计方法. 测绘科学, 2024, 49(1):204-215.
zhou m.*, yang m.*, chen zhe. (2023) flow colocation quotient: measuring bivariate spatial association for flow data. computers, environment and urban systems. 99, 101916.
zhou, mengjie; fu, qingyang; li, yige; wang, yixin; wang, xiaomi; hu, wenqing; discovering spatiotemporal flow patterns: where the origin–destination map meets empirical orthogonal function decomposition, cartography and geographic information science, 2023, 50(2), 113-129.
wu, c., zhou, m.*, liu, p., & yang, m. (2021). analyzing covid-19 using multisource data: an integrated approach of visualization, spatial regression, and machine learning. geohealth, 5, e2021gh000439.
yang, m.; chen, z.; zhou, m.*; liang, x.; bai, z. (2021) the impact of covid-19 on crime: a spatial temporal analysis in chicago. isprs int. j. geo-inf. 10, 152.
zhou, m., ai, t.*, wu, c., gu, y., & wang, n. (2019). a visualization approach for discovering colocation patterns. international journal of geographical information science, 33(3), 567-592.
zhou, m., tian, j., xiong, f., & wang, r. (2017). point grid map: a new type of thematic map for statistical data associated with geographic points. cartography and geographic information science, 44(5): 374-389.
zhou, m., wang, r., mai, s., & tian, j. (2016). spatial and temporal patterns of air quality in the three economic zones of china. journal of maps, 12: 156-162.
ai, t., zhou, m., tian, j., & ye, n. (2016). origin-destination (od) of the interprovincial floating population of china. journal of maps, 12: 577-583.
zhou, m., ai, t., zhou, g., & hu, w. (2020). a visualization method for mining colocation patterns constrained by a road network. ieee access, 8:51933- 51944.
yu, q., gu, y., yang, s. zhou, m.*. (2021). discovering spatiotemporal patterns and urban facilities determinants of cycling activities in beijing. journal of geovisualization and spatial analysis, 5, 16.
zhou, m., hu, w. & ai, t. (2020). multi-level thematic map visualization using the treemap hierarchical representation model. journal of geovisualization and spatial analysis, 4, 12.
wu, c., hu, w., zhou, m., li, s., & jia, y. (2019). data-driven regionalization for analyzing the spatiotemporal characteristics of air quality in china. atmospheric environment, 203, 172-182.
zhou, m.,cheng, y.,ye, n., & tian, j. (2017). effectiveness and efficiency of using different types of rectangular treemap as diagrams in cartography. in advances in cartography and giscience. springer.
zhou, m., wang, r., tian, j., ye, n., & mai, s. (2016). a map-based service supporting different types of geographic knowledge for the public. plos one, 11(4), e0152881.
ai, t., zhou, q., zhang, x., huang, y., & zhou, m. (2014). a simplification of ria coastline with geomorphologic characteristics preserved. marine geodesy, 37(2): 167-186.
艾廷华, 周梦杰 & 陈亚婕. (2014). 专题地图属性信息的 lod 表达与 treemap 可视化. 测绘学报, 42(3): 453-460.
艾廷华, 周梦杰 & 李晓明. (2017). 网络空间同位模式的加色混合可视化挖掘方法. 测绘学报, 46(6): 753-759.